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1.0 INTRODUCTION 
Reliability of advanced complementary metal-oxide semiconductor (CMOS) technology is a complex 
problem that is usually addressed from the standpoint of specific failure mechanisms rather than overall 
reliability of a finished microcircuit. A detailed treatment of CMOS reliability in scaled devices can be 
found in [1]; it should be consulted for a more thorough discussion. The present document provides a 
more concise treatment of the scaled CMOS reliability problem, emphasizing differences in the 
recommended approach for these advanced devices compared to that of less aggressively scaled devices. 
It includes specific recommendations that can be used by flight projects that use advanced CMOS. The 
primary emphasis is on conventional memories, microprocessors, and related devices. Field-
programmable gate array (FPGA) and non-volatile memories are covered elsewhere [2, 3].  

The discussion of reliability is limited to conventional CMOS devices, including the incorporation of 
strained silicon technology that allows bulk CMOS devices to perform better than silicon-on-insulator 
(SOI) technology. More advanced devices, such as dual gate CMOS and FinFet technology, are excluded. 

Despite the aggressive advances in scaling in the commercial market, it is important to realize that the 
advanced devices used in space are more mature. It is highly unlikely that a space project would incur the 
high risk associated with the latest commercial technology, due to fundamental concerns about reliability. 
Furthermore, standard design practice for space systems requires de-rating of voltage, power, and 
temperature. Thus, many reliability issues that are important in commercial applications, and receive a 
great deal of attention in the literature, are of less concern in space.  

1.1  General Characteristics of Scaling 
Decreasing the feature size of CMOS devices not only allows more components to be placed on a single 
chip, but it increases performance by allowing faster switching (or clock) speeds, with reduced power 
compared to devices with larger feature size. Some general scaling trends for CMOS are shown in Figure 
1.1-1; the values are taken from [4]. The horizontal scale is metal-oxide-semiconductor field-effect 
transistor (MOSFET) channel length, not feature size. For advanced devices, channel length is 
approximately 65% of the feature size used in processing. 

Scaling theory originally had an objective of enhancing important circuit characteristics by decreasing 
effective MOSFET transistor channel length using constant electrical field strength as a guide or 
objective. In this manner, reliability would not be excessively compromised, speed would increase, and 
power dissipation per function would decrease. In order to accomplish this, however, power supply 
voltage (and other important voltages within the integrated circuit) would need to decrease by the same 
scaling factor. Some generations of scaling, however, do not decrease these voltages due to customer (and 

 
Figure 1.1-1. CMOS scaling trends for power supply voltage, gate threshold voltage, and channel length [4]. 
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application circuit designers) insistence on compatibility with other integrated circuits in the application 
circuits, whose voltages were set by previous generations of large-scale integration/very-large-scale 
integration (LSI/VLSI) devices. Therefore, some technology nodes had compromised performance. Also, 
the higher electrical fields significantly compromised reliability since some failure mechanisms (such as 
time-dependent dielectric breakdown [TDDB]) are adversely affected (usually significantly and 
sometimes severely). 

In addition, limiting power supply voltage (VDS) decrease with smaller feature size, improves the inter-
element spacing within individual transistors (the depletion width of a reverse-biased junction depends on 
voltage, and a lower voltage is required for reduced lateral spacing).  

VDS for advanced devices is seen by many VLSI designers to be limited to greater than 1 V, partly 
because of the need to maintain sufficiently large logic signals to provide noise margins compatible with 
other integrated circuits (which often operate at higher voltages), thus ensuring adequate design margin. 
Gate threshold voltage decreases with feature size, as shown in Figure 1.1-1. Although it is possible to 
reduce threshold voltage to about 0.25 V, higher values are required to be consistent with noise margin 
requirements as well as circuit requirements at higher temperatures. Most space systems require that 
circuits operate at junction temperatures of approximately 100–110°C, even though the actual junction 
temperature is usually lower. 

The impact on circuit performance of CMOS scaling predicted by G. G. Shahidi in 2000 is illustrated in 
Figure 1.1-2, based on constant field scaling [5]. Scaling allows transistors to operate at higher speeds as 
the technology node (and channel length) advance with scaling. Function density is increased as more 
transistors may be fabricated in the same area (ref. circles in Figure 1.1-2) and power density also 
increases, but not as much. Note that the power supply is reduced as a result of scaling. The predictions 
made in 2000 agree reasonably well with the values implemented in devices with a feature size of 130 nm. 
Since that prediction, parts have advanced much further to features sizes as short as 22 nm. Constant field 
scaling has been modified, using different scale factors for the field in the gate and channel regions [6]. 

Power dissipation is a major concern for all integrated circuits. It often leads to higher junction 
temperature, which may result in sharply decreased reliability and lifetime. Package considerations, 
including thermal resistance, also play a role. The impact of scaling on power dissipation in advanced 

 
Figure 1.1-2. Scaling predictions in 2000 for advanced CMOS devices [5]. 
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CMOS VLSI is shown in Figure 1.1-3 [7]. As transistor feature sizes are sharply reduced, dynamic power 
dissipation becomes a more important factor in total power dissipation. The two main aspects of power 
dissipation are the static or leakage power dissipation, dominated by sub-threshold current and tunneling 
through the gate region; and active power dissipation, dominated by capacitive load drive.  

Static power dissipation becomes more important for scaled devices. The first factor is sub-threshold 
leakage current, nominally 60 to 75 mV/decade at room temperature. At 100°C, it increases to ~120 mV/ 
decade for long-channel transistors. The difference between the “on” and “off” current is determined by 
the gate threshold voltage and the total logic swing. For high-performance devices, the ratio must be at 
least 10,000:1. Statistical variations in threshold voltage also affect this ratio when we consider the large 
number of devices on a chip; Figure 1.1-3 illustrates this for an advanced process [4]. Taking these factors 
into account, the total voltage swing for high-performance CMOS must be at least five times the sub-
threshold slope value, or about 400 mV at high temperature. Other scaling branches (such as dynamic 
random-access memory [DRAM]) require much higher on/off current ratios, which can only be achieved 
with larger logic signals at the gate. 

The above discussion applies to long-channel devices. As the channel length is aggressively shortened, 
the sub-threshold slope increases rapidly, limiting the minimum channel length. The other factor that 
affects static current is tunneling leakage through the gate oxide. For aggressively scaled high-
performance CMOS, that current can be as much as 10% of the current during high-speed switching. It 
can be reduced by using thicker gate oxides, reducing the overall performance advantages of scaling, or 
by using different gate materials (such as hafnium dioxide) that have a higher dielectric constant than 
SiO2. 

Active power dissipation, Pact, due to switching is approximated by the formula: 

    (1) 

where the first term is the effective capacitive loading of each portion of the VLSI circuit, the second term 
is the switching frequency, and the last term is the square of the power supply voltage.  

The user has little control over the capacitive loading since predominant capacitance is within the VLSI 
circuit. The user has less control over the power supply voltage internal to the VLSI circuit in that the 
majority of internal transistors are often powered by internally generated voltages, and these are only 
weakly dependent on the exterior power supply voltage. It is risky to overly reduce the exterior power 

Pact =CL f V
2
DD

 
Figure 1.1-3. Sub-threshold slope showing the effect of statistical fluctuations in threshold voltage on the on/off current ratio. The 
slope is proportional to absolute temperature. A minimum threshold voltage swing of about 400 mV is required for an on/off ratio 
of 104 at high temperature. Additional noise margin requirements further increase this minimum value. 
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supply in the hopes of decreasing power dissipation since many internally necessary functions may not 
work correctly if that is done.  

Reducing the exterior voltage to the lower end of the operating voltage range recommended by the part 
manufacturer is definitely not recommended for these reasons. Also, small decreases in voltage across the 
core transistors in the VLSI will have only a small effect on the active power dissipation.  

The main impact that the user may have on the active power dissipation is to reduce the frequency of 
operation (f in Eq. 1). This has a linear effect on the active power dissipation. 

A comparison of static and active power dissipation as feature size is reduced is shown in Figure 1.1-4. In 
this figure, leakage current at higher temperature is heavily influenced by drain-induced barrier lowering 
(DIBL), and becomes the dominant contributor below 50 nm. Dynamic (active) power increases more 
gradually with scaling. 

However, there is an additional complication for threshold voltage scaling. As devices are scaled to small 
feature size, the number of dopant atoms in the channel decreases to the point that statistical fluctuations 
become important when we consider the distribution of threshold voltage over the large number of 
individual transistors on a large chip. The decrease in the number of dopant atoms for minimum geometry 
transistors is shown in Figure 1.1-5 [8]. This variance increases the variability of threshold voltage for 
highly scaled devices, which affects design margins and reliability. Manufacturers take this variability 
into account when they develop design rules for a specific process, but it has been a key stumbling block 
for highly scaled devices. 

Gate oxide thickness has decreased more rapidly than the other parameters with scaling. Thin oxides 
result in higher transconductance (higher current drive), a key parameter in scaling metrics relating to 
switching. Surprisingly, the large decrease in gate oxide thickness has not directly impacted reliability. 
However, when the gate oxide thickness is reduced below 10 nm, a significant amount of leakage current 
can flow through the gate (due to quantum-mechanical tunneling). This does not directly affect reliability, 
but it increases the standby current. One approach to limit gate leakage is to use gate structures with 
higher dielectric constant (“high-k” gates).  

The reason that the reliability of scaled CMOS has remained acceptable is the sharp reduction of wafer 
defects in each technology node. This is illustrated in Figure 1.1-6 for 512 Mb DRAMs [1]. Similar 
improvements have been noted for advanced microprocessor technologies [4]. 

 

 
Figure 1.1-4. Scaling of active power and leakage current power with decreasing feature size [7]. 

 



  5 

 
Figure 1.1-5. Decrease in the average number of dopant atoms for minimum geometry transistors as technology node scales [8]. 

 

 
Figure 1.1-6. Decrease in defect density for 512 Mb DRAMs as the technology node is decreased [1]. 

 

1.2 Scaling Branches 
During the last 15 years, a wider range of scaling rules has been developed, recognizing that different 
tradeoffs are needed for various end-products [4, 6]. For example, DRAMs need lower standby current 
and lower gate leakage compared to high-performance CMOS devices used in microprocessors and fast 
static RAMs. Consequently, thicker gates are needed for the internal pass transistors used in DRAMs 
compared to other CMOS processes. Table 1.2-1 shows general comparisons of the effects of scaling on 
these technologies. 

On the other hand, special cooling methods can be used for high-end server applications, allowing more 
power dissipation compared to more normal applications of advanced CMOS. Scaling discussions often 
emphasize this branch, but it is clearly incompatible with most space applications. It is included in Table 
1.2-1 for general comparison.  
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Table 1.2-1. Scaling trends for different CMOS applications. 

Application 
Primary Design 

Concerns Power Supply Voltage 
Gate Threshold 

Voltage Reliability Issues 

High performance Switching speed < 1 V 0.3 Electromigration 
Contact integrity 

Mainstream Maximum functionality 
density 

1 to 1.2 V 0.4 Percent defect ratio of 
electrical test 

Low power Low total power 
dissipation 

1.5 to 3.3 V 0.25 Percent defect ratio of 
electrical test 

Memory Low leakage and low 
standby current 

3.3 V 
(internal back bias generator are 
often used to decrease leakage 
current) 

0.5 Retention time for 
dynamic memories; early 
bit failures in large density 
SRAMs 

 
Note further that modern CMOS technologies usually provide at least two different gate thicknesses, one 
for internal logic, which often operates at lower voltage with internally generated power, and one (or 
more) with thicker gate oxides for input/output (I/O) voltage that is compatible with 2.5 or 3.3 V external 
signals. 

1.3 Effects of Scaling on Reliability 
A recent publication from Intel [8] divides reliability issues associated with front-end processing into two 
categories: historical sources of variability, such as lithography, line roughness, and oxide thickness; and 
emerging sources of variability that are a direct result of scaling devices to very small dimensions. The 
main sources of variability are shown in Table 1.3-1. Most of the historical issues have been solved by 
clever improvements in processing. For example, the difficulty of coping with corner rounding and 
geometrical limitations associated with lithography has been overcome by designing devices in pairs for 
feature sizes of 65 nm and below.  

Emerging issues are more difficult to deal with, and will be discussed in more detail in the next section.  

Another key issue is that of device complexity. The large-scale devices that are the main focus of this 
document contain extremely large numbers of transistors. Special techniques (including on-chip error 
correction), and selective elimination of regions with defective devices that are identified during initial 
wafer probe tests, are used to improve manufacturing yield. Thus, there are aspects of the design that are 
quite different from older circuits. 

Complex circuit design (e.g., modern SDRAMs, which are effectively small systems) must also be taken 
into account from the standpoint of reliability. Electrical testing is also a difficult problem that must take 
the design of specific circuit categories into account; it should also be tailored to reflect the actual 
conditions in National Aeronautics and Space Administration (NASA) applications.  

Table 1.3-1. Effect of processing variations on reliability. 
Historical Process Variations Emerging Process Variations 

• Patterning proximity effects 
• Line edge and line width roughness 
• Surface roughness (polishing) 
• Variations in gate oxide thickness 
• Fixed charge and oxide traps 

• Random dopant fluctuations 
• Variations in implants and anneals 
• Variations associated with strain 
• Gate material granularity 
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2.0 DOMINANT RELIABILITY ISSUES 

2.1 Front-End Processing 
The most important issues related to front-end processing are those involving the gate: random dopant 
fluctuations, discussed earlier, and the use of high-k dielectrics for applications that require the 
performance advantages of a thin gate oxide, but with lower gate leakage. 

Significant process changes have become necessary to continue Moore’s law scaling; examples include 
the use of hafnium oxide metal gate transistors (required by advances beyond the 65 nanometer 
technology node), and strained crystalline structure (required by advances beyond 90 nanometer 
technology node). The impact to the VLSI user is that new failure mechanisms and concerns are expected 
beyond the 32 nanometer technology node, and must be considered in manufacturer selection, flight lot 
qualification, and VLSI screening (see Section 7). 

Time-dependent dielectric breakdown (TDDB), contact integrity, and hot-carrier degradation are typically 
less important. However, we should note that hot-carrier degradation has a negative activation energy, 
causing it to be more severe at low temperature. It may be of considerable importance for applications 
requiring extended operation at low temperature, such as surface exploration missions on the Moon or 
Mars. 

Although there is considerable focus on mechanisms associated with front-end processing in the 
literature, there is little that the end user can do to deal with them.1 Most manufacturers investigate these 
issues thoroughly, and ensure that their design rules and processing technology provide adequate 
reliability margins. Therefore, the main emphasis should be on other aspects of reliability, particularly 
those that are unique to NASA space applications. 

2.2 “Back-End” Processing and Packaging 

2.2.1 Metallization 
There are many possible failure modes associated with metallization, particularly for processes that may 
use up to nine different metallization layers. Voids, grain boundaries, and thinning of metallization over 
non-planar regions are contributing factors, along with vias that are required to make connections 
between the different metallization levels. These mechanisms are somewhat intimidating, because a part 
can still function properly with localized defects or geometrical deficiencies. There is no obvious way to 
detect such defects in finished devices. Changes in their characteristics during extended operating periods 
can result in catastrophic failure. 

Electro-migration is also an important mechanism, particularly for regions such as clock drivers and I/O 
circuits where higher currents are required. However, this is expected to be less important for devices 
used in space applications due to derating requirements that reduce the average current (note that dynamic 
current in CMOS scales directly with operating frequency). 

Another issue is electro-migration from vias in copper interconnects. Low-k dielectrics are used in 
more advanced processes, and metal from the contacts can migrate within the dielectric materials. This 
process is quite different from CMOS processes with larger feature sizes, which do not use the new 
insulator materials [9]. Recent information on via reliability from a 32 nm process shows that this 
reliability problem changes in character for highly scaled devices. That study showed that only some of 
the vias actually failed, but that the ratio of those that failed—the number of fatal defects—increased 

                                                
1 Packaged devices do not provide direct access to internal transistors, limiting the ability to examine most of the mechanisms associated with 
front-end processing. For example, hot-carrier degradation is usually investigated with test transistors, applying much higher voltages to the drain 
and gate. Most packaged devices incorporate overvoltage protection that limits the maximum voltage. There are other cases, such as DRAMs, 
where the internal voltage used for access transistors is derived internally; it is unaffected by the external power supply voltage. 
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relative to the total number of vias as the area of the via was reduced. The study also showed that if the 
power through the vias was too high, a transition from insulator to conductor could take place, even at 
much lower temperatures than the typical temperature required for such transitions. This is shown in 
Figure 2.2-1. It illustrates that new reliability problems can be expected as devices are scaled below the 
45 nm node.  

2.2.2 Packaging 
A number of package types are used in advanced VLSI/CMOS. Conservatism of the space community 
notwithstanding, advanced VLSI devices may not be available in traditional military packages. These 
military packages have a large database and heritage in space applications, and therefore, have lower risk 
in future space missions. VLSI parts in dual-side flatpacks and dual-inline packages (DIPs) are now 
becoming rare. Four sided flatpacks (quad flatpacks) using hermetic (ceramic) technology are also 
becoming rare. Commercial technology is driving toward a more I/O efficient usage of pinout. Area 
arrays (ball grid arrays, pin grid arrays and column arrays) are becoming the industry standard. Since the 
commercial marketplace is driven by high volume and low cost, advanced technology devices may only 
be available in non-hermetic plastic packages, which may be built in large batches at lower cost and with 
more uniformity.  

Reliability may be adversely affected since the plastic package is hygroscopic and therefore will allow 
moisture to transport through the plastic into the die region (including the bond wires). For this reason, 
the plastic must be optimized to minimize transport of chemically active (and deleterious) ingredients 
such as chlorides and ionic contaminants (sodium and potassium). 

There is also more stress on the die within the package due to mismatch in the thermal expansion 
coefficient of the die and package. That not only limits maximum and minimum temperature, but may 
also affect screening methods such as the temperature cycling traditionally used in burn-in and 
qualification. 

Ball grid arrays are used for large-scale devices with high pin count. In such packages, the semiconductor 
chip is “flipped” and placed over a carrier with an array of solder balls. The balls are aligned with contact 
regions on the inverted chip. Hermetic packages are not available. More stress occurs at the corner 
regions of these packages compared to the center, which can cause cracking as well as intermittent or 
open contacts. 

 
Figure 2.2-1. Metal-insulator transition in the low-k dielectric material used for interconnects in an advanced 32 nm process [9]. 
The leakage takes place between the materials used in multi-level metallization regions. 
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Column grids, which use small columns of material to establish contact between the package and device 
contacts, have also been developed. Column grid arrays provide a broader contact area compared to ball 
grid arrays, and are preferred for space products. However, they are only available for some devices. 

Ball and column grid arrays provide an interesting conflict regarding testing and screening. One method 
to evaluate their reliability is to subject them to a series of thermal cycles, using the number of such 
cycles before failure as a metric. Although this is probably a good way to evaluate these devices for a 
Mars surface application where daily thermal cycles occur, it may be ineffective for more conventional 
space applications where only small thermal cycles take place. 

A different approach is to evaluate the thickness of intermetallic growth in contacts (at a constant 
temperature), which is a more likely failure mechanism for conventional space applications. Recent 
results for three different ball grid designs are shown in Figure 2.2-2 [10]. The results fit a diffusion 
model, and provide a better way to evaluate this particular failure mechanism compared to deep thermal 
cycling. 

2.3 Methods to Evaluate Advanced Packages 
Failure rates in packages are found to scale as the range of temperature cycling according to the Coffin-
Manson equation [11]: 

  !"~(!! − !!  )! (2) 

The temperatures are the upper and lower temperature of the temperature cycling testing, and the 
exponent q is a material-dependent parameter that must be established empirically. Typically, q is greater 
for more brittle materials such as plastics (a number such as 6 is typical) and is lower for a more ductile 
material such as solder (a number such as 2 is typical). 

For advanced packages, the upper and lower temperature may be restricted (for military packages, the 
upper and lower temperature have been –65°C and +150°C respectively). Most recent generations of 
packaging have the acceptable lower temperature of –55°C and +125°C. Advanced technology packages 
may have even more restricted temperature ranges. 

Industry data is available to establish the important exponent q. In addition, correct values of this 
parameter should be sought from the part manufacturer. 

 
Figure 2.2-2. Increase in the buildup of intermetallic growth compounds in column grid arrays [10]. The results fit a diffusion 
model, and are more directly applicable to failure modes expected in conventional space applications where deep thermal 
cycling is not expected. 
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In addition to temperature cycling experiments (either by the part manufacturer or user), a large sample 
Destructive Physical Analysis (DPA) is advisable to ensure that all failure mechanisms associated with 
advanced technology packages are found, and the relative failure rate and number of cycles to failure is 
established for new generation packages. 

These issues become more critical when the package has not been used in space applications of similar 
duration and environments to those anticipated in the applicable space mission. Temperature cycling data 
to significant levels of failure (such as 10–25% of the packages), or for at least 1000 and preferably 2000 
temperature cycles, should be captured from published literature or part manufacturer testing. Data taken 
at different temperature ranges may be reasonably interpolated using the Coffin-Manson equation.  

Failure analysis should be done on all failures of these extended temperature cycling experiments. This 
will determine if new failure mechanisms have appeared in this generation of packaging. Appropriate 
screening methods to eliminate early temperature cycling failures must be found to determine the ability 
of the advanced packages to withstand the anticipated mission thermal environments. 

2.4 Electrical Testing 
Although it was not discussed earlier, electrical testing is one of the most important reliability issues. 
Extremely large numbers of individual transistors can be placed on a single die, producing very complex 
devices. It is extremely difficult to develop test methods for such complex parts that are capable of 
verifying that the device functions properly in all operating modes. 

A great deal of effort has been expended to develop test patterns that can verify overall functionality, as 
well as sensitivity to different logic patterns and timing. Manufacturers often develop special test modes 
that can be used more efficiently. It is often possible to get such information, and incorporate these tests 
into the overall test approach for packaged devices. 

When such data are not available, and the device is topologically complex (not true of most memories, 
true of microprocessors), then serious consideration should be given to testing the VLSI parts in an 
application environment or similar. 

2.5 End-User Reliability Testing 
Fundamental reliability mechanisms have to be solved at the manufacturing level. The end user can 
perform additional tests on assembled parts to further improve reliability, and perhaps identify marginal 
devices. However, these tests are quite limited, and tend to be focused on mechanisms associated with 
packaging. Examples include: 

1. Electrical testing, which may include specific conditions that cover the expected applications 
2. X-ray examination of devices to examine die attach, bonding, and other factors that might affect 

the ability of a part to withstand shock and vibration, or to dissipate heat 
3. Burn-in tests to eliminate devices that are subject to infant mortality. Although burn-in is often 

used for devices with hermetic packages, the maximum temperature that can be used for non-
hermetic packages is usually too low to make such testing effective. Therefore, consideration 
should be given to using voltage acceleration factors. However, burn-in at higher than normal 
voltages should still be within the part manufacturers recommended operating voltage range to 
prevent damage to the device. 

In advanced technology packages, the glass transition temperature may be less than traditional values 
(typically +150°C). The glass transition temperature is the value (or range) where the temperature 
coefficient of the epoxy mold compound increase by a significant factor (often 3–4) making the mismatch 
within package elements much more severe. This means that repetitive temperature cycling close to or 
through the glass transition temperature is damaging to plastic packaged parts or parts with epoxy 
enclosed within them. Typically, cracks and separations are induced by this stress leading to early time 
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reliability issues. One time stress at a steady state elevated temperature such as during burn-in or life test 
is not deleterious to plastic packaged parts, as demonstrated by copious life test data generated at the Jet 
Propulsion Laboratory (JPL) and other centers. However, for these reasons mission operation near the 
glass transition temperature is discouraged. 

 
 



  12 

3.0 COMMERCIAL PRACTICES 
The commercial market drives advanced technology VLSI. Wafer fabrication is very expensive, with 
modern wafer fabs costing upwards of several billion dollars. Therefore, commercial demands control 
wafer fabrication processes. Design rules are set in the wafer fab by evaluation of advanced technology 
devices using test structures built into each wafer. Test structures are specifically designed to emphasize 
one failure mode of concern. For example, electro-migration test structures use serpentine metallization 
patterns at the extremes of the allowable geometries and surface complexity (e.g., oxide steps).  

Commercial manufacturers assume that if test structures data, using commonly determined acceleration 
factors, show reliability greater than the market-driven needs, then the device may proceed to prototyping. 
Rarely do such prototypes fail reliability testing such as burn-in and life test. Commercial manufacturers 
assert that infant mortality is no longer a concern and has been removed by proper application of design 
rules. In those devices where some infant mortality is still anticipated (such as dense dynamic and static 
RAMs), experiments are conducted to establish the minimum burn-in time necessary. In fact, typically the 
burn-in time is aggressively shortened as the technology matures based on frequent life test experiments. 

Automatic electrical testing is a major component of the end cost of manufacturing VLSI devices. In 
some cases, 30% of the cost of producing such devices is subsumed within the design and implementation 
of 100% testing. VLSI testers routinely cost several million dollars, and many are required to implement 
production test. Therefore, commercial manufacturers aggressively reduce test time and often use single 
temperature testing with guard bands to ensure (to their satisfaction) that three temperature electrical 
characteristics are met. 
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4.0 SCREENING METHODS 
Special test and screening methods are typically required before semiconductor devices can be used in 
space. When parts are procured from a space-qualified manufacturer this is usually done at the factory, 
although the tests that are done as part of the normal process do not necessarily comply with NASA 
requirements. Thus, additional tests may be needed in order to qualify specific lots of devices. 

For parts that are not space qualified, test and screening methods must be done on devices after final 
packaging. The specific requirements are included in NASA and JPL part requirements [12, 13]. 

Although screening methods are reasonably well established for conventional parts, they must be 
modified to some extent for devices with very small feature sizes. From the discussions in Sections 1 and 
2, the best strategy is to rely on manufacturers to deal with front-end processing mechanisms, as well as 
those associated with metallization, interconnects, and bonding. The net recommendation is to 
concentrate on screening methods that are related to packaging, electrical performance, and unique 
requirements for specific applications, such as extreme temperature, or extended thermal cycling. 

4.1 Reliability Acceleration Factors 
Screening and testing methods for reliability mechanisms usually assume that the failure mechanism can 
be accelerated by some means. Many failure mechanisms depend on temperature, but voltage, current, 
and power can also be important. The appropriate acceleration factor for a specific failure mechanism is 
usually determined using special test structures. Examples include individual MOS transistors, ring 
oscillators, and special test structures that allow long chains of interconnects or metallization to be 
evaluated.  

The situation is different for finished, packaged devices. Internal currents are usually limited to a narrow 
range, and the presence of overload protection structures on I/O terminals severely restricts the range of 
electrical conditions that can be used. Consequently, temperature is the most direct way of applying an 
acceleration factor on packaged parts. 

4.2 High-Temperature Testing (Burn-in) 
Burn-in testing has been used for many years as a means of screening marginal devices. It assumes (1) 
that failure mechanisms can be accelerated by raising the temperature, and (2) that the failure probability 
of the overall population is initially much higher, due to infant mortality.  

The Arrhenius equation, shown below, is often assumed to describe the temperature dependence of the 
failure rate (FR): 

  (3) 
 
where A is a constant, EA is the activation energy for the specific mechanism, k is the Boltzmann constant, 
and T is absolute temperature. 
Time and temperature are related by the activation energy. This approach works well for cases where the 
activation energy is known, but its effectiveness is questionable for complex packaged devices, where 
failure can be caused by many different mechanisms, with different activation energies. A default 
assumption that is often used is that the activation energy is 0.7 eV, but activation energies for various 
mechanisms can range from −0.1 to 1.2 eV. 

Figure 4.2-1 shows the effective increase in operating time—the acceleration factor—for three different 
activation energies. For the lowest activation energy, the acceleration factor at 125°C is approximately 
600. Much larger acceleration factors result for higher activation energies. 

FR = Ae
!
EA
kT
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Figure 4.2-1. Acceleration factor vs. temperature for failure mechanisms with various activation energies. 

 
A typical average activation energy for integrated circuits is often assumed to be 0.7 eV. A lower value, 
0.6 eV, is recommended for more advanced processes [14]. The impact of a decrease in activation energy 
is to decrease the effective lifetime of burn-in at a given temperature. In order to obtain the same overall 
improvement, it is necessary to either increase the temperature or extend the burn-in time. 

If only temperature is used to accelerate failure mechanisms, the lower activation energy means that the 
effective strength of infant mortality screening is reduced. For example, if 0.7 eV is valid, and the 
application temperature is 55°C and the burn-in temperature is +125°C, the acceleration factor is about 
78. On the other hand, if the activation energy is 0.6 eV, then the acceleration factor is about 42. To 
achieve the same screening effectiveness, the burn-in temperature must be increased to about 140°C.  

For many VLSI devices, particularly those optimized for speed, the junction temperature must be 
restricted to lower ranges than for previous generations and technology nodes. Therefore, raising the 
burn-in temperature may not only be risky, but may also increase the chance of inadvertent thermal 
runaway during burn-in [Ref. 1, pp. 27 and 45]. It is also possible for undetected transients during burn-in 
to damage good devices, increasing the chances of “walking wounded” devices being used in the flight 
lot. Therefore, raising the junction temperature near the absolute maximum junction temperature specified 
by the manufacturer for VLSI devices is not recommended. 

It is far more prudent to keep the junction temperature at least 20 degrees below the absolute maximum 
specification and instead use voltage acceleration to cull out infant mortals. This has the significant 
additional advantage of removing infant mortals that are more sensitive to voltage acceleration than 
thermal activation. A voltage acceleration factor of between 2 and 5 is advisable for this purpose [Ref. 15, 
see example on pp. 9 and 10]. Using a voltage acceleration factor of 3 and a nominal electric field of 2.5 
megavolts per centimeter across the gate oxide, a 5% increase in power supply voltage during burn-in is 
equivalent to an acceleration of 1.45. A 10% increase in power supply voltage during burn-in is 
equivalent to an acceleration of 2.1. 

Since voltage acceleration factors are strongly technology dependent and the JEDEC document [15] is 
comparatively old, it should not be relied on to calculate voltage acceleration factors for the latest 
technologies. Recent technical literature and the VLSI manufacturer should be consulted to provide a 
better acceleration factor. However, a voltage acceleration of 2 (or higher) is feasible for advanced VLSI 
technology and offers a superior infant mortality screen. 
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4.3 Electrical Testing 
Electrical testing can be an effective way to screen devices. Extending electrical tests to incorporate more 
realistic conditions that encompass actual use conditions is often done, as well as implementing special 
tests to determine pattern sensitivity or maximum frequency limitations. 

Another approach is to develop special tests that are intended to establish that there is adequate margin in 
circuit functionality. For example, SRAMs can be tested at various power supply voltages, examining the 
number of failed bits within the array when the power supply voltage is decreased. Specific parts that 
have less margin can be removed, ensuring that adequate internal design margin is present, and that there 
are few internal defects that affect the part. 
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5.0 DERATING FACTORS 
Derating is a method to improve reliability of parts in a space application environment by consciously 
reducing stresses on the device. It presumes that the relation of reliability to these stresses is known or 
may be established. This assumption is becoming weaker with advanced VLSI. 

As mentioned previously, the Arrhenius equation is still considered valid with scaled CMOS; however, 
the activation energy is regarded as decreasing with more recent technology nodes. Since life testing at 
three temperatures (the most definitive method to establish activation energy) has proven to be 
prohibitively expensive in many instances, the VLSI user must assume that the activation energy of 0.5 to 
0.65 eV is still valid and act accordingly (unless data is provided by the VLSI manufacturer). The 
traditional derating of junction temperature to 110°C is still prudent, but the 40°C margin below absolute 
maximum junction temperature specified by the part manufacturer may become the more critical circuit 
limitation. Power dissipation density is increasing in the more aggressively scaled VLSI CMOS 
technologies, and internal hot spots during ordinary operation are becoming more frequent. Further, 
variations in thermal resistance in more advanced packaging (particularly plastic packaging, which is 
notorious for being a poor heat conductor) is expected to exacerbate this problem. 

As mentioned previously, derating voltage is considered a risky strategy for advanced VLSI parts. 
Typically, several voltages are generated internally in such chips and many different types of transistors 
of varying geometries are used to gain performance advantage. Reducing the voltage even to the lower 
half of the recommended operating range may result in the unintended consequence of peculiar 
functionality in complex devices. Such oddities may not become obvious in all circuits until the mission 
is launched. 

A safer restriction is to derate the frequency of operation. The traditional derating of 80% is still 
appropriate, since the active power dissipation will thereby be also reduced to 80% uniformly within the 
complex VLSI device. 

Generally, it is not possible to reduce currents within the VLSI other than by reducing power. 
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6.0 COMPARISON OF HIGH-RELIABILITY AND COTS MANUFACTURERS 
Traditionally, space systems have used integrated circuits produced by manufacturers subjected to 
frequent surveys and review of their control systems by DLA Land and Marine, NASA, and similar 
organizations. ISO certification is also demanded. Manufacturers who produce only commercial devices 
are generally avoided, but there are exceptions, particularly large memory devices such as DRAMs that 
are only available commercially. This may still be a feasible strategy in the near future, but it is likely to 
become a greater issue. More attention needs to be given to commercial devices in the future, particularly 
for highly scaled devices where fundamental manufacturing is done only by commercial producers. 

Due to the high cost of wafer fab (about $2 billion and more), most wafer fabs are prioritized or 
monopolized for high volume commercial devices. Nevertheless, military and space integrated circuit 
manufacturers employ special techniques to get higher reliability wafers out of these fabs. Such 
techniques include selecting wafers using the results of electrical tests on test structures, and reliability 
tests on test structures.  

EEE-INST-002 [12] is a GSFC document frequently used by space agencies, including the Jet Propulsion 
Laboratory (JPL), to delineate screening and qualification requirements applicable to parts used in space 
hardware. For traditional missions, high reliability parts controlled by Source Control Drawings are 
considered acceptable. For these parts, the pedigree implies and typically requires: 

1. 100% screening including temperature cycling and burn-in  
2. Qualification by extended temperature cycling (100 cycles versus 10 cycles for screening)  
3. Life test (1000 hours instead of the 160 to 240 hours usually used for screening) 
4. Various package tests such as thermal and mechanical shock 
5. Internal atmosphere (water vapor) tests on samples from the flight lot  

Qualification tests are still imposed on a sacrificial sample of units from the flight lot in order to provide 
heightened confidence in the long-term reliability of flight lot parts used for the missions. 

Several issues arise in reviewing these tests when applied to advanced technology VLSI/CMOS devices. 
As mentioned previously, advanced devices may not allow the higher junction temperatures associated 
with traditional space requirements. Also advanced packaging may not be capable of the extended 
temperature cycling regimes demanded within EEE-INST-002. Adjustment of the burn-in (and life test) 
temperature may be necessary, which probably means longer test duration. However, validation of the 
temperature acceleration factor is necessary in such cases. In addition, voltage acceleration should 
seriously be considered. Burn-in and life testing at a higher voltage (in order to accelerate certain failure 
mechanisms), must nevertheless be restricted within the allowable power supply voltages recommended 
by the manufacturer. These tests may be performed, for example, at the nominal power supply voltage 
plus 5%. 

Similarly, more temperature cycles may be needed if the non-operating thermal range is reduced. It is 
important, in that case, that the non-operating thermal range be compared to mission usage. 
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7.0 SPECIFIC RECOMMENDATIONS 

7.1 Relationship of Foundries and End-Manufacturers 
As discussed earlier, various options need to be considered for reliability of advanced CMOS devices in 
space. One of the most important factors is whether the devices are produced by space-qualified 
manufacturers, or by commercial foundries. Although dedicated radiation-hardened foundries are 
available with feature sizes as short as 150 nm, they are not available for smaller feature sizes. Radiation 
tolerant processes, including hardened-by-design processes, are available at the 90 nm node, but they 
actually use commercial foundries, not processing lines that are specifically designed to be hardened to 
radiation.  

Another approach that has been developed is the Trusted Foundry, where government and national 
laboratory personnel develop a working relationship with the foundry that provides—through a careful 
process—access to proprietary information about the processing, design rules, and reliability data. The 
foundry agrees to make such data available for an extended period in order to allow custom circuits to be 
fabricated with that process for military, space, and other critical government applications. Periodic audits 
are made to ensure that the foundry complies with the overall requirements, and that proprietary 
information is properly safeguarded. 

As a result, there are at least three different ways to obtain parts for space use through commercial 
foundries, which are the only option for highly scaled processes: 

1. Parts manufactured through working agreements with mainstream producers of high-reliability 
parts (in this case, the arrangement between the foundry and producer depends on contracts 
between them) 

2. Trusted foundries, as discussed above, where the government establishes the relationship between 
the specific foundry and the designers 

3. Parts produced on modified commercial processes, where changes are made to the process for 
specific wafers or wafer runs that are used for high-reliability (often radiation-hardened 
processes) 

7.2 Source Selection, Qualification, and Screening 
Regardless of the specific approach used for the relationship between the end-manufacturer and foundry, 
three distinct steps are needed in the overall process of selecting and qualifying advanced CMOS parts for 
space applications.  

1. Establishment of the source selection requirements for the manufacturer 
2. Determination of qualification requirements for testing and evaluating the parts produced by the 

process, which may include monitoring process control or reliability test vehicles. These tests are 
generally destructive. 

3. Specific screening tests on the final product that include tests directly related to the circuit 
application and the environmental requirements. These tests are applied to all flight parts, and 
must be done under carefully controlled conditions. They can never be destructive, but may result 
in elimination of some parts from the flight lot that do not pass the screening tests. 

7.2.1 Source Selection  
Source selection requirements are largely based on methods used by the manufacturer to characterize, 
validate, and control the various processing steps involved in manufacturing. These include dealing with 
statistical variations in the characteristics of individual transistors on very large-scale circuits, specifying 
and controlling the defect density at various steps during processing, and specific tests that are made to 
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ensure that the dominant reliability mechanisms are adequately monitored and controlled. Most of the 
latter tests are done on special test structures. 

Table 7.2-1 lists various tests that are done during processing and assembly. Front-end processing tests 
are typically done using test structures. They include evaluation of hot-carrier effects, time-dependent 
dielectric breakdown (involving the gate and lateral insulators), and determination of the effect of drain-
induced barrier lowering on short channel effects. These tests serve two purposes. Initially, they are done 
as part of the overall characterization of the process, and its variability, to establish design rules. Once the 
process is established, the tests are usually repeated periodically to ensure that the overall process remains 
within the expected tolerance range. Other specific tests are done, including measuring the gate oxide 
thickness and various sheet resistance values that also track the process. The results of these tests are 
often evaluated statistically, and monitored to establish statistical control boundaries. 

Other tests are done to evaluate back-end processes (typically metallization and contacts). A different set 
of tests is established to evaluate assembly and packaging, usually including burn-in, although the 
conditions for burn-in at this stage may be less severe than required for space qualification. 

Overall process reliability can be evaluated by tests on the final product. The customer often performs 
these tests after additional thermal cycling and electrical tests at various temperatures. Note, however, that 
the fundamental failure mechanisms due to front-end or back-end processing usually do not manifest 
themselves at this stage, partly because of the difficulty of determining the actual failure mode within a 
complex part with eight or more levels of metallization. 

7.2.2 Qualification Tests 
Tests at this level are usually destructive, and are done on samples from the lot used to assemble parts 
intended for flight use. A sample size of 22 to 45 units (based on lot-tolerance percent defective statistics) 
is often recommended for each test, but it may be necessary to use much smaller sample sizes for 
advanced parts because of their high unit cost. 

Typical qualification tests are shown in Table 7.2-2. They include life tests at high and low temperature, 
destructive physical analyses, unbiased temperature cycling tests that are intended to evaluate weaknesses 
in packaging, and X-ray tests. Low-temperature life tests are a new requirement that is recommended for 
advanced devices because of increased concern about hot-electron degradation. Performing these tests on 
complete packaged parts does not provide the fundamental information of similar tests on test structures 

Table 7.2-1. Tests and evaluations for source selection. 

Mechanism Approach Used by Vendor 
Additional Steps and 

Processes for Space Use 
Specific Screening 

Methods 

Front-end processing Specific failure mechanisms evaluated 
with test structures 
Statistical process evaluation 

Review and track reliability 
data from vendor 

None for this category 

Back-end processing Specific failure mechanisms evaluated 
with test structures (metallization, 
bonding and vias) 

Review and track reliability 
data from vendor 

None for this category 

Packaging Packaging yield and failure mechanisms Review and track reliability 
data from vendor 
Construction analysis 

Additional temperature 
cycling tests 

Overall process 
reliability 

Yield of final product 
(relative values may be adequate for this 
evaluation) 

Evaluation and additional 
electrical testing of final 
devices by customer 

Additional temperature 
cycling test 
Additional burn-in testing 
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that are usually done over a range of conditions, but it involves an extremely large number of individual 
transistors on the circuit, with improved statistics. 

A list of various screening tests is shown in Table 7.2-3. Burn-in is nearly always performed, although the 
bias conditions, time, and temperature must be carefully selected to ensure that the conditions will be 
effective in weeding out infant mortality, and that the temperature of the die is within the limits needed to 
ensure that reliability is not adversely affected. This is not always straightforward for large packages 
because of thermal gradients. The uniformity of the die attachment and conduction paths to heat sinks can 
affect this, and generally require extensive analysis for large-scale devices. 

Temperature cycling for 100% of the parts in the flight lot may be recommended for some complex 
packages. The number of cycles and the temperature range are more restricted than those used in the 
sample tests during qualification, which do not go into flight hardware. 

Special measurements are not always used, but they can be effective in screening out marginal devices. 
Examples include voltage margin tests (using reduced power supply voltage to ensure that the part will 
operate with reduced internal logic switching voltage), and evaluation of statistical distributions of normal 
electrical parameters to weed out parts with atypical values, even if they are within the overall electrical 
specification limits. The latter approach requires “read and record” data for all parts in the flight lot. 

Table 7.2-2. Qualification tests. 
Test Purpose(s) Issues Special Evaluations 

High-temperature life test Evaluation of temperature-
activated mechanisms 

— Drift in electrical parameters 
Effects on TDDB, surface inversion, 
and electro-migration 

Low-temperature life test 
(As appropriate) 

Electrical and die reliability 
evaluation at low temperature 

— Effects of hot carrier degradation on 
overall electrical performance 
Drift in electrical parameters 

Destructive physical analysis 
(DPA) 

Evaluate die and construction — Residual gas analysis when 
appropriate 

Extended temperature 
cycling 

Mechanical stress on die and 
package after repeated deep 
cycling 

— Cracks at edge of large packages 
 

X-ray Evaluate bonding, die attach, and 
package assembly details 

— — 

Table 7.2-3. Screening tests. 
Test Purpose(s) Issues Special Evaluations 

Burn-in Weed out parts affected by infant 
mortality 

— Weed out defective cells or 
bits 

Temperature cycling Weed out early package failures 
Cycles must be limited to 
avoid impacting flight lot 
reliability 

— 

X-ray Evaluate bonding, die attach, and 
package assembly details 

— — 

Special electrical tests 
Characterize and weed out parts 
with reduced operating margins 

— Verify operation under 
conditions for cold 
temperature environments 
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7.3 Applications in Extreme Environments 
Some applications require that parts be used well beyond the normal region where they are designed and 
tested by the manufacturer. For example, there are many cases where parts have to be used at low 
temperature, such as Mars surface missions, missions to cold bodies (such as asteroids), and in 
applications on conventional spacecraft outside the normal electronic enclosures, where lower 
temperatures are encountered. 

The first issue that must be dealt with is that of determining whether the part can actually function 
properly at temperatures well below the normal design range. Laboratory characterization tests and 
modeling can be used to determine this. The second issue is that of packaging. A number of mechanisms 
are involved, including the mismatch of thermal expansion coefficients of leads, feed-throughs, the 
semiconductor die, and the package. Test and qualification methods need to be developed that take these 
mechanisms into account.  

It is important to distinguish between missions where the part is only cooled once, and cases where it 
must be frequently cycled between low and moderate temperatures (such as the Mars surface). Test and 
qualification methods are quite different for these two scenarios.  
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8.0 SUMMARY 
This document provides recommendations for using advanced CMOS devices, with feature size below 90 
nm, in space applications. The very high cost of semiconductor processing lines that are capable of 
producing such advanced devices makes it impossible to use dedicated foundries for the limited market in 
space. Thus, commercial fabrication lines have to be adapted for space use. Although one can argue that 
devices in space require higher reliability, this is largely offset by the increased derating factors in space. 
In addition, most space applications actually have lower temperature requirements than many commercial 
applications, including those in automobiles. There are exceptions, including surface exploration 
missions, as well as cases where electronics are used outside electronic enclosures, with wider 
temperature requirements; these applications have to be treated as special cases. 

Commercial manufacturers have met the increased challenges of maintaining low defect density and high 
yield, despite the increased difficulty that arises with devices that have very small feature size and 
extremely high numbers of devices on a single chip. New approaches have been developed to deal with 
defects, including “hard wired” changes after wafer probing to map around defective sub-circuit regions 
from a complex part, and the incorporation of error correction methods within the overall functionality.  

There is little that the end user can do to evaluate front-end processing mechanisms, other than working 
closely with manufacturers to monitor the approaches that they use to deal with them, along with 
statistical information about yield and the properties of test structures that are used for overall control of 
the manufacturing process. That is the specific approach that is recommended for these types of 
mechanisms. 

Back-end processes are also complex, and are difficult for the end-user to evaluate. Just as for front-end 
processes, the most effective method is to work closely with manufacturers to understand how they 
monitor and control these processes, rather than attempting to deal with them at the packaged part level. 

From the standpoint of packaged devices, reliability problems associated with packaging, testing, and 
screening are topics that can be evaluated by the end user. These include: 

1. X-ray screening to evaluate die attach methods as well as issues involved with packaging 
2. Burn-in testing, subject to assumptions about failure mechanisms and activation energies 
3. Extending electrical tests to include read-and-record parametric tests after burn-in or other tests 
4. Electrical tests using lower (or higher) power supply voltage to determine overall circuit 

performance margins 
5. Special tests at extreme temperatures (including temperature cycling), if required by the specific 

application 
6. Destructive physical analysis 

The most difficult problem for highly scaled devices is that of dealing with new failure mechanisms, as 
well as with larger statistical variations in processing and device parameters. Based on recent 
publications, mainstream manufacturers appear to have reduced the defect density to even lower values, 
consistent with the requirements for very large density circuits, at least to nodes as small as 45 nm. 
However, it is possible that testing or field failures may occur due to the extremely complex processing, 
and large numbers of contacts and metallization layers. Prospective users of these technologies must 
carefully follow trends and examples in the literature relating to reliability, as well as investigations by 
NASA or the Department of Defense (DoD) related to reliability. 

As devices are scaled below the 45 nm node, new challenges occur in testing and manufacturing that may 
not be covered by this guideline. Periodic updates are recommended to ensure that the information 
represents present-day technology, and that specific examples and “lessons learned” are incorporated. 
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